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Abstract — In this paper we presented new performance 

analysis of the crosspoint-queued (CPQ) switch with 2N  
crosspoint buffers size one under the Bernoulli i.i.d. incoming 
traffic. We modeled analysed switch with discrete Markov 
chain. Using that model for finite N, we made program in 
MATLAB for calculating switch performance - throughput, 
loss probability and average delay. These results are 
compared with simulation results for different work-
conserving algorithms under the same traffic and results we 
found in literature.  
 

Index Terms — average delay, crosspoint-queued switch, 
loss probability, Markov chain, throughput. 
 

I. INTRODUCTION 
In this paper, we analysed crosspoint-queued (CPQ) 

switch performance. The CPQ switching fabric is a 
buffered crossbar with crosspoint cells, as illustrated in 
Fig. 1. The incoming packets arrive directly to the 
crosspoint buffers, i.e. packets are not queued at the input 
and there is no any transfer of control information 
between inputs and crosspoint buffers. This means that 
there is no need for complex input scheduling as in 
crossbar switch with Virtual Output Queuing (VOQ) [1] 
or control communication between linecards and 
scheduling as in Combined Input and Crosspoint Queued 
(CICQ) switch [2]-[3], which represents one of the main 
advantages of this solution. Due to simplicity of this 
solution, buffers and switching fabric could be 
implemented on the single chip, what makes hardware 
implementation much easier. 

In CPQ architecture illustrated in Fig. 1, the incoming 
packet originated from certain input and addressed to 
appropriate output is queued in crosspoint buffer. In every 
time slot, scheduler chooses one of the non-empty 
crosspoint buffers and forwards its head of line packet to 
the output. This selection should be based on different 
work-conserving algorithms [4] (OQ, LQF, RR, FRRM, 
RAND.). These algorithms are called work-conserving 
because each output always services a buffer whenever 
one of the buffers destined to it is non-empty. In LQF 
(Longest Queue First) algorithm based switch [5], each 
output schedules the longest queue in its column, 
resolving ties uniformly at random. The Round Robin 
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algorithm [6] alternately serves queues without regard for 
traffic priority. FBRR (Frame Based Round Robin) [4] 
algorithm considers all crosspoint buffers in a round-robin 
order and when find non-empty buffer, services it until it 
is empty. FBRR is useful under some non-uniform arrival 
patterns when ERR (Exhaustive Round Robin) algorithm 
[7] could introduce starvation of low-level incoming 
traffic. In CQ switch with random algorithm (RAND), 
each output picks uniformly at random a nonempty buffer 
to serve. 

 

 
Fig. 1.  Crosspoint-queued switch 

 
Let N be number of switch inputs/outputs and 1B =  size 

of crosspoint buffer (Fig. 1). We assumed that time is 
slotted into fixed-size time-slots, and that each of the time-
slots is divided in two phases: departure and arrival. It is 
important to notice that in our case first comes departure 
phase, and then arrival phase. As a first step in analyzing 
behavior of CPQ switch with buffers larger than one cell, 
we presented new model for analyzing switch 
performance - throughput, loss probability and average 
delay.  

Closed-form expressions for the throughput and average 
delay are already obtained in [8] using Z-transforms. 
Switch throughput in [8] is defined as the limiting ratio of 
the cumulative number of packets entering any crosspoint 
buffer by the cumulative number of arrived packets. For 
small crosspoint buffers of size one, under uniform 
Bernoulli i.i.d arrivals of load p, and any work-conserving 
scheduling algorithm, the switch throughput in [8] is: 
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where 1 pq
N

= − . The crosspoint throughput  is equal to 

the probability that a packet arriving to the crosspoint 
buffer is not dropped. Equivalently, if denotes the 
steady-state probability that crosspoint buffer keeps packet 
before the arrival phase, then crosspoint throughput is: 

ijTh

ijP

  (2) 1ij ijTh P= −

An average delay is defined as ratio of probability  
and the probability that packet arrives and is absorbed in 
the crosspoint buffer [8]: 

ijP
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Loss probability is the ratio of lost traffic relative to the 

input traffic.   
Comparing our analytic and simulation results with 

results in [8], it appears that they are very close (Table 1, 2 
and 3 in Section IV). We believe that the most significant 
advantages of our analysis lie in simplicity and 
extensibility for larger buffer. 

The structure of this paper is as follows. In Section II, 
we introduce mathematical model of CPQ switch, based on 
column stochastic Markov matrix. Then, performance 
expressions for throughput, loss probability and average 
delay time are presented in Section III. Section IV 
provides simulation results for LQF, RR, ERR, FBRR and 
RAND algorithm as well as comparison of our analytical 
results, results of simulation and results in [8]. Finally, we 
conclude the paper in Section V.  

II. MATHEMATICAL MODEL 

A. State transition diagram 
We modeled CPQ switch under the Bernoulli i.i.d 

(independent and identically distributed) arrival traffic. In 
case of Bernoulli i.i.d traffic, it is assumed that the arrival 
time of a new packet, after the completion of the previous 
packet, is independent and identically distributed; the 
traffic is independent across inputs. For that kind of 
traffic, we modeled N crosspoint buffers size one as one 
buffer size N and after that we modeled this buffer with 
discrete Markov chain / /1/NM M N  with  states. In 
this queue, at most N packets could arrive and at most one 
packet could leave during one time step. Therefore, the 
queue size can increase by more than one, but can only 
decrease by one in each time step. Probability of arrival is 
p and because of uniform kind of traffic, arrival 
probability on single input is

1N +

/p N . Departure probability 
is 1 (one packet leaves queue with probability 1) if buffer 
is nonempty. 

A Markov chain stays in a particular state for a certain 
amount of time, called the hold time. In a discrete-time 
Markov chain, the hold time assumes discrete values. As a 
result, changes in the states occur at discrete time values. 
State transition diagram for discrete / /1/NM M N  Markov 
chain that we modeled is given in Fig. 2. 

 

 
 

Fig. 2.  State transition diagram 
 
Probability that packet moves from state 0 to state j is 

 (j=0, 1,…, N). In transition matrix, it is first column.  0 jp
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Transition probabilities from the state ‘1” are the same 

like those from state “0”, since we made assumption that 
one packet leaves state for sure, i.e. departure probability 
is 1.  
  (5) 1 0jp p=

Transition probabilities from state i (i=1,..., N)  to state j 
(j=0, 1,…, N) for 1i j≤ +  are: 
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where k=0,..., N-i+1. 
For the last state transition probabilities are: 
 

 1 1 1NNNN
pp p
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B. State transition matrix 
State transition matrix P is lower ( 1) ( 1N N )+ × +  

Hessenberg matrix in which all the elements 0ijp =  for 
. For finite N transition matrix P is: 1i j> +
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State transition matrix P has some peculiar properties: 
1. The number of rows is equal to number of 

columns i.e. P is square matrix. 
2. All the elements of P are real numbers i.e. P is 

real matrix. 
3. For all values of i and j,  i.e. P is 0 ijp≤ ≤
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nonnegative matrix. 
4. Sum of each column is 1. 
5. Magnitudes of all eigenvalues obey the 

condition | | 1iλ ≤ . 
6. At least one of the eigenvalues of P equals 1.  

From all these properties, we conclude that the 
transition matrix is column stochastic or Markov matrix 
[9]. 

III. PERFORMANCE 
In this section, we analyse switch performance: 

throughput, loss probability and average delay.  
The average input traffic  is given from the 

binomial distribution: 
( )aN in

 ( )a
pN in Na N p
N

= = =  (9) 

Now we are interested in estimating the rate of packets 
leaving the queue. We call this rate the average output 
traffic  or throughput of queue. ( )aN out

  (10) 0
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The unit of throughput in the above expression is 

packets/time step. The throughput could be expressed in 
unit packets/second: 

 ' ThTh
T

=  (11) 

where T is duration of time step given in seconds. 
Departure probability c is 1 (one packet lefts queue with 

probability 1). s is a steady-state distribution vector i.e. 
eigenvector of state transition matrix P that corresponds to 
unity eigenvalue.  

We used the traffic conservation principle to calculate 
cell loss probability. Cell loss probability is given by: 
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We used Little’s theorem [10] to calculate an average 

delay, which is the average number of time slots that 
packet spends in the queue. 

  (13) /a hW Q T=

The average queue size is given by the equation: 
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Notice that each output provides services independently 
of other outputs. Therefore, without loss of generality we 
focused on one column and considered its performance. 

Program in MATLAB, which we used to get 
performance, is based on equations (10), (12) and (13). 
We used function eig(P) to obtain matrices X and D [9].  

 
 [ ] (eig P)=X,D   

 
Matrix X is matrix of eigenvectors: 

  (15) [ ... ]= N1 2X x x x

Eigenvector x satisfies the equation  
 λ=Px x  (16) 

where λ  is eigenvalue of P. Eigenvalues could be 

evaluated from 
 det | | 0λ− =P I  (17) 

where I is unit N N×  matrix. 
D is diagonal matrix whose diagonal elements are the 

eigenvalues of P.  
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State vector s defines as normalized eigenvector 

(column of matrix X) which corresponds to eigenvalue 1 
in matrix D (if there is no value 1 in matrix D then we take 
closes value to that value, in order to get eigenvector in 
matrix X). State vector is used to calculate performance. 

It is important to note that in CPQ switches the 
performance of each output can be analyzed 
independently, because the CPQ switch architecture 
isolates packets addressed to each output. As long as 
traffic from input i to output j is independent of other 
traffic processes, we will be able to study CPQ switches 
based on column performance. 

In [8] performance is obtained using Z-transforms.  
Considering different defining of throughput and work 
environment in our paper and in [8], we made some 
adaptation to be able to compare these results. Table 1 
confirms that throughputs are the same in both cases. Now 
we want to compare results for average delay. In [8] 
packets could arrive and leave in the same time step. In 
other words, it is possible for packet not to wait what is 
not possible in our switch performance-analyzing 
scenario. Therefore, due to comparison we increased 
average delay [8] by one. It is obvious from Table 3 that 
obtained results are identical to modified results from [8]. 

IV. SIMULATION RESULTS 
Now we want to compare the results which we have got 

in MATLAB with simulation results and results from 
literature, for the 4 4×  switch. The simulation is 
performed under uniform Bernoulli i.i.d arrival for 
different values of p - from 0.01 to 1. Time is divided into 
equal time slots that correspond to time required for 
transferring one cell. Each simulation is performed for a 
million time slots.   

In Table 1, Table 2 and Table 3 are shown results for 
throughput, loss probability and average delay, 
respectively. We compared results for p=0.01, 0.1003, 
0.3001, 0.4999, 0.6999, 0.91, 0.9502, 0.99 and 1. It is 
obvious from tables that with crosspoint buffer of one 
packet length and uniform traffic, CPQ switch for all 
simulated algorithms invoke almost identical performance, 
according to [8].  

For example, we can consider arrival probability p=1. 
In this case, throughput is identical in our analytical model 
and in [8]. LQF algorithm gives quite lower results, while 
RR, ERR and FBRR give quite larger results then 
analytical. Random model provide the highest results for 
p=1, but that difference is still low. Also, we can see
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TABLE 1: THROUGHPUT (packets/time step) 

p   0.01   0.1003   0.3001   0.4999   0.6999      0.91   0.9502    0.99        1 
Analytic 0.009999 0.100198 0.296937 0.483174 0.648636 0.788288 0.810325 0.830605 0.835461 
LQF 0.01003 0.10018 0.29692 0.48316 0.64883 0.78813 0.8103 0.83046 0.835433 
RR 0.01003 0.10018 0.29692 0.48318 0.64878 0.78816 0.81033 0.83056 0.835463 
ERR 0.01003 0.10018 0.29692 0.48318 0.64878 0.78816 0.81033 0.83056 0.835463 
FBRR 0.010025 0.100176 0.296919 0.483184 0.648781 0.788162 0.810328 0.830561 0.835463 
RAND 0.010025 0.10018 0.296932 0.483137 0.648786 0.788192 0.810243 0.830528 0.835519 
[8]  0.009999 0.100198 0.296937 0.483174 0.648636 0.788288 0.810325 0.830605 0.835461 

TABLE 2: LOSS PROBABILITY 
p   0.01   0.1003   0.3001   0.4999   0.6999      0.91   0.9502    0.99        1 
Analytic  0.000009 0.001017 0.010541 0.033459 0.073245 0.13375 0.147206 0.161005 0.164539 
LQF 0.00005 0.0010097 0.0105974 0.0335421 0.0730347 0.133902 0.1472163 0.1611688 0.1645673 
RR 0 0.001027 0.0105949 0.0334981 0.0730968 0.13387 0.1471892 0.161063 0.164537 
ERR 0 0.001027 0.0105949 0.0334981 0.0730968 0.13387 0.1471892 0.161063 0.164537 
FBRR 0 0.001027 0,0105949 0,0334981 0,0730968 0,13387 0,1471892 0,161063 0,164537 
RAND 0.00005 0.0009922 0.0105507 0.0335932 0.073089 0.133838 0.1472792 0.1610966 0.1644808 
[8] 0.000009 0.001017 0.010541 0.033459 0.073245 0.13375 0.147206 0.161005 0.164539 

TABLE 3: AVERAGE DELAY (time steps) 
p   0.01   0.1003   0.3001   0.4999   0.6999      0.91   0.9502    0.99        1 
Analytic 1.003778 1.040591 1.141996 1.276995 1.451688 1.678685 1.726654 1.77536 1.787774 
LQF 1.004065 1.039989 1.142253 1.277582 1.451821 1.678727 1.726843 1.775956 1.787863 
RR 1.004115 1.039987 1.142388 1.277687 1.451372 1.679431 1.727296 1.776494 1.787684 
ERR 1.004115 1.039987 1.142388 1.277687 1.451372 1.679431 1.727296 1.776494 1.787684 
FBRR 1,004115 1,039987 1,142388 1,277687 1,451372 1,679431 1,727296 1,776494 1,787684 
RAND 1.004065 1.04004 1.142386 1.277534 1.451452 1.67972 1.72662 1.775974 1.787471 
[8] 1.003778 1.040591 1.141996 1.276995 1.451688 1.678685 1.726654 1.77536 1.787774 

that our analytic results for loss probability and average 
delay time are identical with those in [8]. 

Analyzing simulation results, we conclude that loss 
probability and average delay for CPQ switch with LQF 
algorithm is quite higher than for other algorithms.  

V. CONCLUSION 
In this paper we introduced new performance analyses 

of crosspoint-queued switch with crosspoint buffers of 
size one. Considering Bernoulli i.i.d. arrival traffic we 
modeled CPQ switch as discrete Markov chain, and 
presented results for throughput, loss probability and 
average delay. We showed that obtained results are tightly 
close to results presented in [8] and simulation results for 
different work-conserving scheduling algorithms. Main 
advantages of our approach in this paper are simplicity 
and extensibility. Based on this, our goal in near future is 
to model CPQ switch performance under Bernoulli i.i.d. 
arrival traffic for larger crosspoint buffer size. 
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